Efficient Conversion of O-Substituted 3-Hydroxy-4-imino-oxazolidin-2-ones into O-Substituted α -Hydroxyamidoximes

LETTERS 2004 Vol. 6, No. 24 4403-4405

ORGANIC

Thomas Kurz* and Khalid Widyan

Institute of Pharmacy, University of Hamburg, Bundesstrasse 45, 20146 Hamburg, Germany

kurz@chemie.uni.hamburg.de

Received July 7, 2004

ABSTRACT

$$\begin{array}{c} OH \\ R^{1} \swarrow CN \\ R^{1} \swarrow CN \\ H_{2}NOR^{2} \\ R^{1} \end{array} \xrightarrow{V} OR^{2} \\ R^{1} \qquad NH \\ \end{array} \begin{array}{c} N = OR^{2} \\ MeOH \\ NH_{2} \\ NH_{2} \\ NH_{2} \end{array} \begin{array}{c} OH \\ OH \\ MeOH \\ NH_{2} \\$$

An efficient and convenient two-step synthesis of O-substituted α -hydroxyamidoximes has been developed. The first step involves a highyielding one-pot synthesis of the so far unknown O-substituted 3-hydroxy-4-imino-oxazolidin-2-ones by reacting cyanohydrins stepwise with 1,1'-carbonyldiimidazole and O-substituted hydroxylamines. The second step represents a novel, sodium methoxide-mediated conversion of O-substituted 3-hydroxy-4-imino-oxazolidin-2-ones into the corresponding O-substituted α -hydroxyamidoximes.

 α -Hydroxyamidoximes are α -functionalized derivatives of amidoximes, a class of compounds that has found applications in organic, analytical, and medicinal chemistry.

As a metal ion chelating functional group, the amidoxime moiety represents a promising pharmacophore for the development of metalloenzyme inhibitors.¹ In analytical chemistry, amidoximes are used as selective extracting reagents for the quantitative spectrophotometric determination of toxic metal cations such as cadmium (II), vanadium (V), and osmium (VIII).² Amidoximes are versatile building blocks for the synthesis of various heterocycles.^{1a,3} Furthermore, the ability of O-substituted amidoximes to act as prodrugs of amidines has recently attracted considerable attention in medicinal chemistry.⁴

O-Alkyl(aralkyl)-substituted amidoximes are commonly prepared by alkylation of hydroxyamidines with alkyl-(aralkyl) halides and alkyl sulfates in the presence of a suitable base.^{1a} *O*-Aryl- and *O*-*t*-Bu-substituted amidoximes

10.1021/oI040045v CCC: \$27.50 © 2004 American Chemical Society Published on Web 10/28/2004

have not been reported so far. Although the chemistry of amidoximes has been studied intensively, relatively few O-unsubstituted α -hydroxyamidoximes (**I**) are described in the literature. Compounds **I** are only accessible by treatment of cyanohydrins and α -hydroxyimidates with hydroxyl-amine.⁵ However, due to the weaker nucleophilicity of O-substituted hydroxylamines, these methods cannot be applied for the synthesis of O-substituted α -hydroxyamidoximes (**II**).

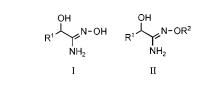


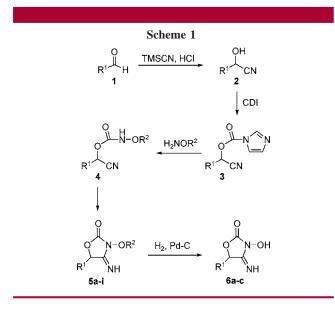
Figure 1. α-Hydroxyamidoximes.

Only two O-substituted α -hydroxyamidoximes (**II**), which have been prepared by treatment of α -hydroxyamidoximes

^{(1) (}a) Eloy, F.; Lenaers, R. *Chem. Rev.* **1962**, *62*, 155. (b) Briggs, L. K.; Cambie, R. C.; Dean, C.; Rutledge, P. S. *Aust. J. Chem.* **1976**, *29*, 327.

^{(2) (}a) Chakravarty, S.; Deb, M. K.; Mishra, R. K. J. AOAC Int. **1993**, 76 (3), 604. (b) Deb, M. K.; Mishra, N.; Patel, K. S.; Mishra, R. K. Analyst **1991**, 116, 323.

^{(3) (}a) Zinner, G. Perner, M., Grünefeld, J., Schecker, H.-G. Arch. Pharm. 1986, 319, 1073. (b) Hussein, A. C. Heterocycles 1987, 26, 163.


^{(4) (}a) Anbazhagan M., Boykin D. W, Stephens, C. E. *Tetrahedron Lett.* **2002**, *43*, 9089. (b) Clement, B. *Drug Metab. Rev.* **2002**, *34*, 565.

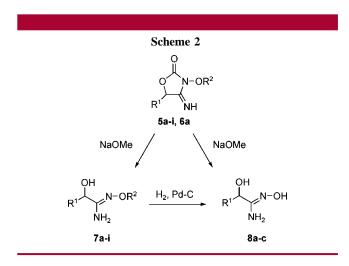
^{(5) (}a) Tiemann, F. *Chem. Ber.* **1884**, *17*, 126. (b) Gross, F. *Chem. Ber.* **1885**, *18*, 1077. (c) Schiff, H. *Liebigs Ann. Chem.* **1902**, *321*, 357. (d) Schwarz, G. Zur Cyclisierenden Carbonylierung von α -Hydroxycarbohydroximsäureestern und *N*-Hydroxycarbamaten, Ph.D. Dissertation, Technical University Carolo-Wilhelmina, Brunswick, Germany, 1987.

with trityl chloride in 40 and 60% yields, respectively, are reported in the literature.⁶ In a previous publication we described the synthesis and decarbonylation of O-substituted 3-hydroxyoxazolidin-2,4-diones as a novel synthetic pathway for the preparation of O-protected α -hydroxy-hydroxamates.⁷

The lack of an efficient and general method for the preparation of O-substituted α -hydroxyamidoximes prompted us to investigate the synthesis and applicability of O-substituted 3-hydroxy-4-imino-oxazolidin-2-ones as precursors for the synthesis of the title compounds. So far, O-substituted 3-hydroxy-4-imino-oxazolidin-2-ones (**5**) have only been reported as intermediates but not isolated and characterized.⁷

Compounds 5a-i have now been synthesized in a convenient one-pot reaction by treatment of 1,1'-carbonyldiimidazole (CDI) with cyanohydrins (2),^{7,8} followed by addition of O-substituted hydroxylamines to the CDIactivated cyanohydrins (3) at room temperature in 86–91% yield (Scheme 1, Table 1). During the reaction, the formation

of intermediates **3** and **4** was monitored by IR spectroscopy. The disappearance of the (CN) band in the IR spectra at 2231 cm⁻¹ and the formation of two sharp absorption bands at 1695-1705 and 1795-1805 cm⁻¹ clearly indicated the ring closure of **4** to **5**.


Finally, catalytic hydrogenation of 5a-c afforded 3-hydroxy-4-imino-oxazolidin-2-ones (6a-c) in 92–95% yield.

Conversion of compounds 5a-i into *O*-alkyl-, *O*-aralkyl-, and *O*-phenyl-substituted α -hydroxyamidoximes (7a-i) was accomplished in high yields of 90–95% by refluxing 5a-i in the presence of sodium methoxide (0.2 equiv) in methanol for 1 h. When **6a** was reacted with sodium methoxide (0.2 equiv), no decarbonylation occurred due to neutralization of sodium methoxide by **6a**. However, treatment of **6a** with an excess of sodium methoxide in methanol afforded **8a** in 70%

Table 1. Synthesis of O-Substituted and O-Unsubstituted3-Hydroxy-4-imino-oxazolidin-2-ones (5 and 6)

entry	\mathbb{R}^1	\mathbb{R}^2	yield
5a	$PhCH_2$	$PhCH_2$	90%
5b	Ph_2CH	$PhCH_2$	86%
5c	<i>t</i> -Bu	$PhCH_2$	91%
5d	C_3H_5	PhCH_2	90%
5e	<i>t</i> -Bu	<i>t</i> -Bu	90%
5f	Ph_2CH	<i>t</i> -Bu	90%
5g	Ph_2CH	3,4-di-(CH ₃ O)C ₆ H ₃ CH ₂	86%
5h	Ph_2CH	CH_3	87%
5i	Ph_2CH	Ph	86%
6a	$PhCH_2$	Н	92%
6b	Ph_2CH	Н	91%
6c	<i>t</i> -Bu	Н	95%

(Scheme 2). Catalytic hydrogenation of $7\mathbf{a}-\mathbf{c}$ led to Ounsubstituted α -hydroxyamidoximes $8\mathbf{a}-\mathbf{c}$ in 93–97% yield (Scheme 2, Table 2).

In conclusion, we have developed an operationally simple one-pot protocol for the preparation of previously unpub-

Table 2. Synthesis of O-Substituted and O-Unsubstituted α -Hydroxyamidoximes (7 and 8)

entry	\mathbb{R}^1	\mathbb{R}^2	yield
7a	$PhCH_2$	$PhCH_2$	95%
7b	Ph_2CH	$PhCH_2$	92%
7c	<i>t</i> -Bu	$PhCH_2$	91%
7d	C_3H_5	$PhCH_2$	92%
7e	<i>t</i> -Bu	<i>t</i> -Bu	90%
7f	Ph_2CH	<i>t</i> -Bu	91%
7g	Ph_2CH	3,4-di-(CH ₃ O)C ₆ H ₃ CH ₂	90%
7h	Ph_2CH	CH_3	95%
7i	Ph_2CH	Ph	90%
8a	$PhCH_2$	Н	95%
8b	Ph_2CH	Н	93%
8c	<i>t</i> -Bu	Н	97%

⁽⁶⁾ Tronchet, J. M. J.; Zosimo-Landolfo, G. J. Carbohydr. Chem. 1986, 5, 631.
(7) Kurz, T.; Widyan, K. Org. Biomol. Chem. 2004, 2, 2023.

 ⁽⁷⁾ Kulz, 1., Wiliyan, K. Org. Biomol. Chem. 2004, 2, 2023.
 (8) Gassman, P. G.; Talley, J. J. Tetrahedron Lett. 1978, 40, 3773.

lished O-substituted 3-hydroxy-4-imino-oxazolidin-2-ones. Their treatment with sodium methoxide (0.2 equiv) in methanol furnished *O*-alkyl-, *O*-aralkyl-, and *O*-phenyl-substituted α -hydroxyamidoximes in high yields. Furthermore, deprotection of *O*-benzyl-substituted α -hydroxyamidoximes as well as decarbonylation of 3-hydroxy-4-imino-oxazolidin-2-one **6a** led to α -hydroxyamidoximes **8**.

Acknowledgment. We thank Prof. Dr. D. Geffken for his valuable help in the preparation of this manuscript.

Supporting Information Available: Experimental procedures, spectroscopic data, elemental analysis, and melting points for compounds 5-8. This material is available free of charge via the Internet at http://pubs.acs.org. OL040045V